Смекни!
smekni.com

Строение металлов (стр. 3 из 48)

1.4. Последовательные этапы процесса кристаллизации металла

Рост кристалла про­должается только в тех направлениях, где есть свободный доступ жидко­го металла. В результате кристаллы, имевшие сначала геометрически пра­вильную форму, после затвердевания получают неправильную форму, их называют кристаллитами или зернами (рис. 1.4, е).

Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем мельче зер­но металла.

Величина зерен, образующихся при кристаллизации, зависит не толь­ко от количества самопроизвольно зарождающихся центров кристалли­зации, но также и от количества нерастворимых примесей, всегда имею­щихся в жидком металле. Такие нерастворимые примеси являются гото­выми центрами кристаллизации. Ими являются оксиды (например, Аl2O3,), нитриды, сульфиды и другие соединения. Центрами кристалли­зации в данном металле или сплаве могут быть только такие твердые частицы, которые соизмеримы с размерами атомов основного металла. Кристаллическая решетка таких твердых частиц должна быть близка по своему строению и параметрам решетке кристаллизующегося металла. Чем больше таких частичек, тем мельче будут зерна закристаллизовав­шегося металла.

На образование центров кристаллизации влияет и скорость охлажде­ния. Чем выше скорость охлаждения, тем больше возникает центров кри­сталлизации и, следовательно, мельче зерно металла. Чтобы получить мелкое зерно, созда­ют искусственные центры кристаллиза­ции. Для этого в расплавленный металл (расплав) вводят специальные вещества, называемые модификаторами. Так, при модифицировании магниевых сплавов зерно уменьшается от 0,2—0,3 до 0,01-0,02 мм, т.е. в 15-20 раз. Моди­фицирование отливок проводят введением в расплав добавок, которые образуют тугоплавкие соединения (кар­биды, оксиды). При модифицирова­нии, например стали, применяют алю­миний, титан, ванадий; алюминиевых сплавов — марганец, титан, ванадий.

Иногда в качестве модификаторов применяют поверхностно-активные вещества. Они растворяются в жидком металле. Эти модификаторы осаждаются на поверхности растущих кри­сталлов, образуя очень тонкий слой. Этот слой препятствует дальнейше­му росту кристаллов, придавая металлу мелкозернистое строение.

1.2.2 Строение металлического слитка.

Форма растущих кристаллов определя­ется не только условиями их касания друг с другом, но и составом сплава, наличием примесей и режимом охлаждения. Обычно механизм образова­ния кристаллов носит дендритный (древовидный) характер (рис. 1.5).

Рис. 1.5. Схема дендритного роста крис­талла

Денд­ритная кристаллизация характеризуется тем, что рост зародышей происхо­дит с неравномерной скоростью. После образования зародышей их разви­тие идет в тех плоскостях и направлениях решетки, которые имеют наиболь­шую плотность упаковки атомов и минимальное расстояние между ними. В этих направлениях образуются длинные ветви будущего кристалла — так называемые оси (1) первого порядка (рис.1.5). В дальнейшем от осей первого порядка начинают расти новые оси (2) — оси второго порядка, от осей вто­рого порядка- оси (3) - третьего порядка и т.д. По мере кристаллизации образуются оси более высокого порядка, которые постепенно заполняют все промежутки, ранее занятые жидким металлом.

Рассмотрим реальный процесс получения стального слитка. Стальные слитки получают охлаждением в металлических формах (изложницах) или на установках непрерывной разливки. В изложнице сталь не может затвердеть одновременно во всем объеме из-за невозможности создания равномерной скорости отвода тепла. Поэтому процесс кристаллизации стали начинается у холодных стенок и дна изложницы, а затем распрост­раняется внутрь жидкого металла.

1.6. Схема строения стального слитка:

а - расположение дендритов в наружных частях слитка, б - строение слитка; 1 — стенки изложницы, 2 - мелкие равноосные кристаллы, 3 ~ древовидные кристаллы, 4 - равноосные неориентированные кристаллы больших размеров, 5 - усадочная рыхлость, 6 — усадочная раковина

При соприкосновении жидкого металла со стенками изложницы 1 (рис. 1.6) в начальный момент образуется зона мелких равноосные кристаллов 2. Так как объем твердого металла меньше жидкого, между стенкой из­ложницы и застывшим металлом образуется воздушная прослойка и сама стенка нагревается от соприкосновения с металлом. Поэтому скорость охлаждения металла снижается, и кристаллы растут в направлении отвода теплоты. При этом образуется зона 3, Состоящая из древовидных или столбчатых кристаллов. Во внутренней зоне слитка 4 образуются равно­осные, неориентированные кристаллы больших размеров в результате замедленного охлаждения.

В верхней части слитка, которая затвердевает в последнюю очередь, образуется усадочная раковина 6 вследствие уменьшения объема металла при охлаждении. Под усадочной раковиной металл в зоне 5 получается рыхлым из-за большого количества усадочных пор. Для получения изде­лий используют только часть слитка, удаляя усадочную раковину и рыхлый металл слитка для последующего переплава.

Слиток имеет неоднородный химический состав, который тем больше, чем крупнее слиток. Например, в стальном слитке концентрация серы и фосфора увеличивается от поверхности к центру и снизу вверх. Химичес­кую неоднородность по отдельным зонам слитка называют зональной лик­вацией. Она отрицательно влияет на механические свойства металла.

1.2.3 Аллотропия металлов.

Аллотропией, или полиморфизмом, называют способность металла в твердом состоянии иметь различные, кристаллические формы. Процесс перехода из одной кри­сталлической формы в другую называ­ют аллотропическим превращением. При нагреве чистого металла такое превра­щение сопровождается поглощением тепла и происходит при постоянной температуре, что связано с необходи­мостью затраты определенной энергии на перестройку кристаллической решет­ки. Аллотропические превращения име­ют многие металлы: железо, олово, ти­тан и др. Например, железо в интервале температур 911—1392°С имеет гранецентрированную кубическую решетку (ГКЦ) γ-Fе (рис.1.7). В интервалах до 911˚С и от 1392 до 1539˚С железо имеет объемно-центрированную кубическую решетку (ОЦК) — α-Fе. Аллотропические формы металла обозначаются буквами α, β, γ и т. д. Существующая при самой низкой температуре алло­тропическая форма металла обозначается через


букву а, которая в виде индекса добавляется к символу химического элемента металла и т. д.

1.7. Аллотропические превращения в железе.

При аллотропических превращениях происходит изменение свойств металлов — изменение объема металлов (особенно характерно для олова) и растворимости углерода (характерно для железа).

1.2.4 Методы изучения строения металлов.

Изучение строения металлов и сплавов производится методами макро- и микроанализа, рентгеновско­го, а также дефектоскопии (рентгеновской, магнитной, ультразвуковой). Методом макроанализа изучается макроструктура, т.е. структура, видимая невооруженным глазом или с помощью лупы, при этом выявля­ются крупные дефекты: трещины, усадочные раковины, газовые пузыри и т. д., а также неравномерность распределения примесей в металле. Макроструктуру определяют по изломам металла, по макрошлифам. Макрошлиф — это образец металла или сплава, одна из сторон которого отшлифована, тщательно обезжирена, протравлена и рассматривается с помощью лупы с увеличением в 5—10х.

Микроанализ выявляет структуру металла или сплава по микрошлифам, приготовленным так же, как и для макроанализа, но дополнительно от­полированным до зеркального блеска. Шлифы рассматриваются в отраженном свете под оптическим микроскопом при увеличении до 3000х . Из-за различной ориентировки зерен металла они травятся не в одина­ковой степени и под микроскопом свет также отражается неодинаково. Границы зерен, благодаря примесям, травятся сильнее, чем основной ме­талл, и выявляются более рельефно. В сплаве структурные составляю­щие травятся также различно.

В электронном микроскопе рассматривают реплику — слепок с особо тонкой структуры металла при увеличениях до 100 000х. Этот важней­ший анализ определяет размеры и форму зерен, структурные составля­ющие, неметаллические включения и их характер — трещины, порис­тость и т. д., качество термической обработки. Зная микроструктуру, можно объяснить причины изменения свойств металла.

С помощью рентгеновского анализа изучают атомную структуру метал­лов, типы и параметры кристаллических решеток, а также дефекты, ле­жащие в глубине. Этот анализ, основанный на дифракции рентгеновских лучей рядами атомов кристаллической решетки, позволяет обнаружить дефекты (пористость, трещины, газовые пузыри, шлаковые включения и т. д.), не разрушая металла. В местах дефектов рентгеновские лучи по­глощаются меньше, чем в сплошном металле, и поэтому на фотопленке такие лучи образуют темные пятна, соответствующие форме дефекта.

Для исследования структуры металла и дефектов изделий широко при­меняют гамма-лучи, которые проникают в изделие набольшую глубину, чем рентгеновские.

Магнитным методом исследуют дефекты в магнитных металлах (сталь, никель и др.) на глубине до 2 мм (трещины различного происхождения, неметаллические включения и т. д.). Для этого испытуемое изделие на­магничивают, покрывают его поверхность порошком железа; осматри­вают его поверхность и размагничивают изделие. Вокруг дефекта обра­зуется неоднородное поле, вследствие чего магнитный порошок повто­ряет очертания дефекта. Другой метод - магнитный индукционный -часто используют для оценки полноты структурных превращений в сплавах (изделиях) после их термической обработки.