Смекни!
smekni.com

Строение металлов (стр. 48 из 48)

Очень полно и быстро происходит спекание в вакууме, которое по сравнению со спеканием в нейтральной среде в большинстве случаев начинается при более низких температурах и даёт повышенную плотность изделий.

Влияние атмосферы спекания возрастает, если к ней добавить некоторые соединения, активирующие процесс спекания (например, пары галогенидов). В этом случае атомы металла на выступах как наиболее активные реагируют с такими добавками, а образующиеся соединения снова восстанавливаются до металла, атомы которого в свою очередь конденсируются в местах с минимальным запасом свободной энергии (стыки частиц, впадины на поверхности частиц), благоприятствуя переносу вещества через газовую фазу. Активированная атмосфера может благоприятно влиять на процесс спекания и вследствие удаления примесей и рафинирования спекаемого материала.

6.5. Горячее прессование

Горячим прессованием называют одновременное прессование и спекание порошков. Совмещение прессования и спекания в одной операции позволяет реализовать наблюдаемое при повышении температуры увеличение текучести материалов и получать фактически беспористые изделия и изделия из большого класса материалов, для которых применение других методов затруднительно или даже невозможно (например, карбидов, боридов и других сверхтвёрдых материалов).

Наиболее существенными достоинствами горячего прессования следует считать максимально быстрое уплотнение материала и получение изделия с минимальной пористостью при сравнительно малых удельных давлениях прессования.

В отличие от холодного прессования выдержка под давлением при горячем прессованием значительно увеличивается, что необходимо для прохождения процесса спекания, время которого при наличии внешнего давления в свою очередь значительно сокращается.

Температуру горячего прессования выбирают в зависимости от природы спекаемого материала, и она составляет 0,5 - 0,9 Тпл основного компонента.

Механизм уплотнения при горячем прессовании аналогичен наблюдаемому при спекании и включает образование механического контакта, рост плотности с одновременным увеличением размеров частиц и дальнейший рост частиц при незначительном дополнительном уплотнении.

Свойства горячепрессованных изделий значительно зависит от условий проведения процесса. Обычно такие изделия обладают более высоким пределом прочности, повышенной твердостью, лучшей электропроводностью и более точными размерами, чем изделия, полученные путем последовательного прессования порошка и спекания прессовки. Эти свойства тем выше, чем больше давление прессования. Горячепрессованные изделия отличаются мелкозернистой структурой и нередко по механическим свойствам не уступают аналогичным деталям из литых материалов.

Горячим может быть любой из известных способов формования. Это прессование в пресс-формах, прокатка, динамическое прессование. Наиболее распространено горячее прессование в пресс-формах. Для нагрева обычно используется электрический ток, хотя пресс-форма с порошком или порошок могут быть нагреты и иным способом до приложения давления к порошку. На рис. 6.19 представлена схема двустороннего горячего прессования с косвенным нагревом. На практике часто применяется прямой нагрев при подводе тока к матрице или пуансонам, а также индукционный нагрев.

Материалом для изготовления прессформ служат жаропрочные сплавы и графит. В настоящее время всё шире находят применение пресс-формы из тугоплавких оксидов и других химических соединений. Для предотвращения взаимодействия прессуемого материала с материалом пресс-формы внутреннюю её поверхность покрывают каким-либо инертным составом (например, жидким стеклом, эмалью) или металлической фольгой. Кроме того, для предохранения прессуемого материала от окисления применяют защитные среды (восстановительные, инертные или вакуум).

При горячем прессовании важную роль играет способ приложения и снятия нагрузки. Целесообразно сначала быстрее нагреть порошок, а затем прикладывать давление. В этом случае улучшается условия удаления газов, адсорбированных порошком, что способствует его уплотнению. Снимать давление необходимо после полного остывания спрессованного изделия, что уменьшает потерю плотности из-за упругого последействия.

В промышленности для горячего прессования наиболее широкое распространение получили специальные гидравлические прессы, в которых расположено устройство для нагревания порошка. Давление прессования и температуру в них повышают попеременно до требуемой величины.

Рис. 6.19. Схема двустороннего горячего прессования в прессформе

с косвенным нагревом

1 - низкий пуансон; 2 - нагреватель; 3 - матрица; 4 - порошок; 5 прессовка; 6 - верхний пуансон; 7 - источник питания

Горячее прессование широко применяют в тех случаях, где требуется получить высокие механические и физические свойства (высокую прочность и твердость, хорошую электропроводность и точные габаритные размерь^. Горячее прессование часто является единственным методом изготовления крупных и плотных заготовок из некоторых тугоплавких металлов и материалов.

Однако, несмотря на большие достоинства, горячее прессование уступает раздельному процессу прессования и спекания по производительности и по энергетическим затратам из-за сложности оборудования. К недостаткам горячего прессования следует отнести и трудность автоматизации процесса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Дальский А. М. и др. Технология конструкционных материалов /А. М. Дальский, Т. М. Барсукова, Л. Н. Бухаркин. – М.: Машиностроение, 2002.

2. Никифоров В. М. Технология металлов и других косирукционных материалов /В. М. Никифоров. – СПб.: Политехника, 2006.

3. Фетисов Г. П. и др. Материаловедение и технология металлов /Г. П. Фетисов, М. Г. Карпман, В. М. Матюнин и др.: Под ред. Г. П. Фетисова. – М.: Высшая школа, 2006.

4. Кечин В. А. и др. Проектирование и производство литых заготовок /В. А. Кечин, Г. Ф. Селихов, А. Н. Афонин. – Владимир: ВлГУ, 2002.

5. Колесов С. Н. и др. Материаловедение и технология металлов / С. Н. Колесов, И. С. Колесов. – М.: Высшая школа, 2004

6. Дальский А. М. Технология конструкционных материалов / А. М. Дальский. – М.: Машиностроение, 1985.

7. Технология конструкционных материалов /Под ред. М. А. Шатерина. – СПб.: Политехника, 2005.