Смекни!
smekni.com

Строение металлов (стр. 47 из 48)

Рекристаллизация - это образование и рост зерен за счет соседних зерен той же фазы. На первой стадии рекристаллизации из определенных центров образуется новые зерна с более современной структурой за счет исходных зерен с менее совершенной структурой, и процесс называется первичной рекристаллизацией. На второй стадии происходит рост образующихся зерен за счет таких же соседних зерен, и процесс называется собирательной рекристаллизацией. Рост зерен определяется стремлением системы к уменьшению запаса внутренней энергии. Так как в единице поверхности заключена поверхностная энергия определенной величины, то укрупнение зерна приводит к уменьшению суммарной поверхности и, следовательно, к уменьшению запаса свободной энергии в системе. Практически рост зерен продолжается до их некоторого среднего размера в связи с тормозящим влиянием посторонних включений, находящихся по границам зерен. Это поры, примеси и пленки на поверхности порошковых частиц.

Увеличение размера зерен при сравнительно небольших температурах происходит в поверхностных слоях прессовки и называется поверхностной рекристаллизацией. С повышением температуры рекристаллизация происходит во всем объёме прессовки и носит название межчастичной собирательной рекристаллизации. В общем случае спеченные прессовки характеризуются сравнительно небольшими размерами зерен.

Перенос атомов через газовую фазу при спекании является видом транспортного механизма, при котором происходит испарение вещества с поверхности одних частиц и конденсация его на поверхности других частиц. В связи с зависимостью упругости пара над поверхностью от её кривизны вещество испаряется с выпуклых участков частиц и конденсируется на вогнутой поверхности контакта за счет разности в упругости паров вещества над этими поверхностями. Перенос вещества идет в направлении межчастичного контакта, увеличивая его протяженность и соответственно повышая прочность межчастичного сцепления. Перенос атомов через газовую фазу способствует изменению формы пор, но не оказывает влияния на изменение плотности при спекании.

Влияние явления переноса вещества через газовую фазу при спекании на физико-механические свойства тел возрастает с повышением температуры и в результате химических реакций между спекаемым материалом и газовой атмосферой печи. Например, при восстановлении оксидов образующиеся атомы металла обладают большой подвижностью и легко переходят в газовую фазу, увеличивая концентрацию в ней паров вещества. В процессе выдержки при температуре спекания упругости паров вещества над частицами выравниваются и перенос атомов через газовую фазу прекращается.

Спекание порошковых материалов, когда образуется жидкая фаза, называется жидкофазным, при котором происходят процессы, несколько отличающиеся от процессов твердофазного спекания. В присутствии жидкой фазы, развитие сил сцепления между отдельными частицами порошка облегчается, но только в том случае, если она смачивает частицы, остающиеся твердыми. При плохой смачиваемости жидкая фаза тормозит спекание, препятствуя уплотнению.

Появление жидкой фазы при спекании, образующейся за счет расплавления более легкоплавкого компонента, приводит к увеличению скорости диффузии компонентов и облегчает перемещение частиц твердой фазы относительно друг друга, способствует заполнению пор.

Различают три стадии спекания в присутствии жидкой фазы:

- вязкое течение жидкости и перегруппировка частиц. На этой стадии образовавшаяся жидкая фаза заполняет поры и способствует перегруппировке твердых частиц, что приводит к их более плотной упаковке;

- растворение и осаждение, при котором мелкие частицы растворяются в жидкости, а крупные растут за счет вещества, осаждающегося на них из расплава;

- образование жесткого скелета. На этой стадии твердые частицы срастаются, жидкость уже не может затекать в межчастичные промежутки и усадка связана с процессами, имеющими место при твердофазном спекании. В результате срастания частиц образуется жесткий скелет и уплотнение подчиняется закономерностям твердофазного спекания.

В реальном процессе жидкофазного спекания в зависимости от природы фаз и количества жидкой фазы преобладает та или иная стадия спекания. В общем случае скорость и степень уплотнения увеличиваются при возрастании содержания жидкой фазы. Однако, количество образующейся жидкой фазы не должно быть слишком большим и не превышать объём твердой фазы, так как это ведет к потере изделием формы, полученной при прессовании. Одновременно необходимо иметь в виду, что чрезмерно малое количество жидкой фазы не позволяет в полной мере использовать преимущества спекания с жидкой фазой, так как её объём будет недостаточен для обеспечения требуемой активности соответствующих процессов при спекании.

К жидкофазному спеканию относится метод пропитки жидким металлом, представляющим собой легкоплавкую металлическую составляющую композиции, спрессованного и спеченного пористого каркаса из тугоплавкого компонента. При этом жидкий металл или сплав заполняет поры заготовки из тугоплавкого компонента.

Применяются два метода пропитки:

- метод наложения;

- метод погружения.

Метод наложения заключается в том, что на пористый каркас помещают пропитывающий металл в виде кусочка, объём которого равен объёму имеющихся пор каркаса. После нагрева в печи до соответствующей температуры происходит расплавление легкоплавкого металла и расплав впитывается в поры тугоплавкого каркаса.

- Метод погружения состоит в том, что пористый каркас погружают в ванну с расплавленным пропитывающим металлом. Впитывание происходит под действием капиллярных сил. Температура пропитки обычно превышает на 100 — 150 °С температуру плавления пропитывающего металла.

6.4.2 Технологические факторы, влияющие на процесс спекания

Основными технологическими факторами, влияющими на процесс спекания и свойства спеченных материалов являются:

- свойства исходных порошков;

- -давление прессования;

- температура спекания;

- продолжительность спекания;

- атмосфера спекания.

Свойства исходных порошков во многом предопределяют их поведение при спекании. Установлено, что с увеличением дисперсности порошка процесс спекания ускоряется. Так как запас поверхностной энергии тем больше, чем больше суммарная поверхность частиц, то процесс спекания ускоряется с увеличением их дисперсности и шероховатости, а плотность и прочность изделий возрастают. При одной и той же плотности механические и электрические свойства изделий после спекания тем выше, чем дисперснее исходный порошок.

Шероховатость поверхности частиц и дефектность кристаллического строения способствуют усилению диффузионной подвижности атомов, что позволяет получать более плотные и прочные изделия.

Структура спеченных из тонких порошков изделий отличается наличием большого числа крупных зерен, выросших в результате рекристаллизации при спекании.

Интенсификации спекания способствуют оксиды, содержащиеся в большом количестве в мелких порошках и восстанавливающихся в процессе спекания.

В общем случае на изменение плотности и свойств прессовок при спекании влияют величина и состояние поверхности частиц, содержание оксидов и несовершенства кристаллического строения.

Давление прессования. Увеличение давления прессования приводит к увеличению исходной плотности спекаемых изделий и к уменьшению объёмной и линейной усадок. Это связано с тем, что при большей плотности материал имеет больший коэффициент вязкости или сильнее сопротивляется изменениям объёма под воздействием усилий, возникающих при спекании. Так как плотность прессовок неодинакова по высоте, то при спекании усадка в средней части прессовки больше, чем у её торцов, пористость в которых после прессования меньше. При спекании мелкозернистых порошков наблюдается выравнивание пористости как между прессовок с разной исходной плотностью, так и между местами с неоднородной плотностью у одной и той же прессовки.

Увеличение давления прессования приводит к повышению твердости, сопротивления разрыву и сжатию, т.е. к повышению всех показателей прочности спеченных изделий.

Температура спекания. С повышением температуры спекания плотность и прочность спеченных изделий возрастают и тем быстрее, чем ниже давление прессования.

В области низких температур усадка незначительна, так как происходит испарение влаги, удаление адсорбированных газов и восстановление поверхностных оксидов.

В области высоких температур происходит значительный рост металлического контакта между частицами, уплотнение пор под действием сил поверхностного натяжения и усадка прессовки.

Большое значение имеет скорость подъёма температуры при спекании. При
быстром подъёме в крупногабаритных изделиях может наблюдаться местное
различие в величине усадки из-за неравномерности прогрева, что приводит к
искажению формы изделия. -i

Продолжительность спекания. Выдержка спрессованных изделий при постоянной температуре спекания вызывает сначала резкий, а затем более медленный рост плотности, прочности и других свойств. Максимальная прочность достигается за довольно короткое время и при дальнейшем увеличении времени изотермической выдержки она практически остаётся неизменной. На практике выдержка при спекании варьируется от нескольких десятков минут донескольких часов в зависимости от температуры спекания, состава и требуемой плотности изделия, его размеров и других факторов.

Атмосфера спекания существенно влияет на результаты. Сравнение результатов спекания, проводимого в различных средах, свидетельствует о том, что при спекании в восстановительной среде достигается большая плотность, чем при спекании в нейтральной среде. Это объясняется химическим воздействием восстановительной среды на оксидные пленки, приводящим к их уничтожению. Благодаря этому активируется миграция атомов металла к контактным участкам соприкасающихся частиц.