Смекни!
smekni.com

Строение металлов (стр. 5 из 48)

Упругость — способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оценивают пределом пропорциональности σпц и пределом упругости σуп.

Предел пропорциональности σпц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напряжением и деформацией образца δпц=Pпц/F0.

Предел упругости (условный) σ0,05 — это условное напряжение в МПа, соответствующее нагрузке, при которой остаточная деформация впер­вые достигает 0,05% от расчетной длины образца 10: σ 0,050,05/F0, где Р0,05 - нагрузка предела упругости, Н.

Пластичность — это способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь. Характеризуется относительным удлинением и относительным сужением.

Относительное удлинение (после разрыва) δ - это отношение прира­щения (lk-l0) расчетной длины образца после разрыва к его первоначаль­ной расчетной длине l0, выраженное в процентах: δ =[( lk-l0/ l0) 100%.

Относительное сужение (после разрыва) σ — это отношение разности начальной и минимальной площадей (F0—Fk) поперечного сечения об­разца после разрыва к начальной площади Fg поперечного сечения, выраженное в процентах: σ =[( F0—Fk / F0] 100%.

Чем больше значения относительного удлинения и сужения для мате­риала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицатель­ным свойством.

Ударная вязкость — это способность материала сопротивляться дина­мическим нагрузкам. Определяется как отношение затраченной на из­лом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надреза KC=W/F.

Для испытания изготовляют специальные стандартные образцы, име­ющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа, затраченная на излом.

Определение ударной вязкости особенно важно для некоторых метал­лов, работающих при минусовых температурах и проявляющих склон­ность к хладноломкости. Чем ниже порог хладноломкости, т.е. темпера­тура, при которой вязкое разрушение материала переходит в хрупкое, и чем больше запас вязкости материала, тем больше ударная вязкость ма­териала. Хладноломкость—снижение ударной вязкости материалов при низких температурах.

Циклическая вязкость — это способность материалов поглощать энер­гию при повторно-переменных нагрузках. Материалы с высокой цикли­ческой вязкостью быстро гасят вибрации, которые часто являются при­чиной преждевременного разрушения. Например, чугун, имеющий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем уг­леродистая сталь.

Твердостью называют способность материала сопротивляться проник­новению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют спо­собами Бринелля, Роквелла и Виккерса (рис. 1.10).

1.10. Определение твердости металла методами Бринелля (а), Роквелла (б)

и Виккерса (в)

Способ Бринелля основан на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной закаленный шарик (рис. 1.10, а). Диаметр шарика и величину нагрузки устанавливают в зависимости от твердости и толщины испытываемого металла (Ø2,5; 5 или 10 мм). Твердость по Бринеллю определяют на твердомере ТШ (твердомер шариковый). Испытание про­водят следующим образом. На поверхности образца, твердость которого нужно измерить, напильником или абразивным кругом зачищают пло­щадку размером 3—5 см2.

Образец ставят на столик прибора и поднима­ют до соприкосновения со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавливает шарик в испытывае­мый образец. На поверхности металла образуется отпечаток. Чем боль­ше отпечаток, тем металл мягче.

За меру твердости НВ принимают отношение нагрузки к площади по­верхности отпечатка по формуле.

,

где Р – внешняя нагрузка;

F – площадь поверхности отпечатка шарика;

D – диаметр стального шарика;

d – диаметр отпечатка стального шарика.

Числовое значение твердости определяют так: измеряют диаметр от­печатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла.

Метод основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 1.10, б)

Индентором для мягких материалов (до НВ 230) служит стальной шарик диаметром 1/16" (Ø1,6 мм), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (около 100 Н) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1 в течение некоторого времени действует общая рабочая нагрузка Р (Р=Ро1) . После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой .

В зависимости от природы материала используют три шкалы твердости (табл. 1.1)

Таблица 1.1

Шкалы по определению твердости по Роквеллу

Шкала

Обозначение

Индентор

Нагрузка, Н

Область применения

Р0 Р1 Р2

А

HRA

Алмазный конус < 1200

100

500

600

Для особо твердых материалов

В

HRB

Стальной закаленный шарик Ø1,6 мм

100

900

1000

Для относительно мягких материалов.

С

HRC

Алмазный конус < 1200

100

1400

1500

Для относительно твердых материалов.

При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку Р=Р01=1500 Н. Твердость отсчитывают по шкале "С" и обозначают HRC.

Если при испытании берется стальной шарик и общая нагрузка 1000 Н, то твердость отсчитывается по шкале "В" и обозначается HRB.

При испытании очень твердых или тонких изделий используют алмаз­ный конус и общую нагрузку 600 Н. Твердость отсчитывается по шкале "А" и обозначается HRA. Пример обозначения твердости по Роквеллу:

Н RC 50 - твердость 50 по шкале "С".

При определении твердости способом Виккерса в качестве вдавливае­мого в материал наконечника используют четырехгранную алмазную пирамиду с углом при вершине 136°. Твердость определяется как отношение приложенной нагрузки Р к площади поверхности отпечатка F по формуле

где d – диагональ отпечатка.

При испытаниях применяют нагруз­ки от 50 до 1000 Н (меньшие значения нагрузки для определения твердо­сти тонких изделий и твердых, упрочненных поверхностных слоев ме­талла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микро­скопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу — HV 500.

Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет со­бой алмазную четырехгранную пирамиду (с углом при вершине 136°, та­ким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05-5 Н, а размер отпечатка 5-30 мкм. Испытание проводят на оптическом микроскопе ПМТ-3, снабженном механизмом нагружения. Микротвердость оценивают по величине диа­гонали отпечатка.

Метод царапания . Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору). Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

Усталостью называют процесс постепенного накопления повреж­дений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обус­ловлена концентрацией напряжений в отдельных его объемах, в которых име­ются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся по­сле разрушения образца в результате многократного нагружения и состоящий из двух разных по внешне­му виду частей. Одна часть излома с ровной (затертой) поверхностью обра­зуется вследствие трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая часть с зернистым изло­мом возникает в момент разрушения образца. Испытания на усталость проводят на специальных машинах. Наиболее распространены ма­шины для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, а также машины для ис­пытаний на растяжение-сжатие и на повторно-переменное кручение. В результате испытаний определяют предел выносливости, характе­ризующий сопротивление усталости.