Смекни!
smekni.com

Строение металлов (стр. 42 из 48)

На скорость образования зародышей и на скорость формирования металлических кристаллов влияют степень разряжения в аппарате, концентрация паров металла и главным образом температура. При относительно низкой температуре образуется значительно больше зародышей, чем при повышенной. Увеличение концентрации пара металла и снижение вакуума в аппарате благоприятствует образованию зародышей.

Условия развития зародышей отличны от условий их образования. Скорость роста кристаллов также зависит от температуры процесса и от концентрации паров металла. Однако глубина вакуума влияет на форму и размер частиц металла. В условиях глубокого вакуума образуются очень мелкие частицы с правильно сформированными гранями. В умеренном вакууме образуется смесь правильных кристаллов самых различных размеров, а в неглубоком вакууме появляются дендриты.

В промышленных масштабах карбонильным методом производят порошки никеля, железа, кобальта, хрома, молибдена, вольфрама и некоторых других металлов. Метод позволяет получать и полиметаллические порошки, например железоникелевые, железомолибденовые, железокобальтовые, железоникельмолибденовые. В этом случае термическому разложению подвергают смесь карбонилов соответствующих металлов. Сами карбонилы при этом готовят отдельно. Сплавы можно получать и в том случае, если в аппарат разложения вместе с парами карбонила вводить порошок другого металла. Карбонил разлагается на поверхности порошковых частиц и образуется сплав.

Гидрометаллургический способ. Метод является одним из способов хлорной металлургии, в которой используются активные свойства хлора и хлоридов для получения редких металлов и веществ в высокочистом состоянии, когда другие известные методы не могут быть применены. Метод может быть использован и для получения легированного порошка из комплексных руд, содержащих никель, хром, ванадий и другие легирующие элементы, и перерабатываемые в настоящее время с большими потерями указанных элементов.

Сущность способа заключается в том, что металлосодержащий материал подвергается процессу восстановления. Полученный продукт обрабатывается соляной кислотой, в результате чего металл переходит в раствор образуя хлориды по схеме:

Ме + НС1 → МеС1 + Н2

Нерастворимые компоненты (пустая порода, зола и др.) остаются в осадке. Раствор отделяют от осадка фильтраций, упаривают до концентрации насыщения и подвергают кристаллизации. Полученные кристаллы хлоридов восстанавливают водородом.

Применительно к комплексным рудам в раствор переходят железо, никель, хром, ванадий, марганец. Нерастворимый осадок имеет самостоятельную ценность, так как после перевода в раствор железа и некоторых легирующих элементов он обогащается другими компонентами.

В термодинамическом отношении, характеризующем возможность получения легированного железа из руд хлоридным методом, представляют интерес три основные операции.

- восстановительный обжиг руды;

- растворение обожженной руды в соляной кислоте;

- восстановление хлоридов.

Расчеты показывают, что при восстановительном обжиге в интервале температур 700 - 1000°С возможно восстановление оксидов железа и никеля. Оксиды остальных металлов в указанном температурном интервале не восстанавливаются. Однако, в присутствии железа возможно восстановление оксидов хрома и марганца, сопровождающегося образованием твердого раствора (Fe — Me), снижающим сродство восстанавливаемого металла к кислороду.

На рис. 6.9 и 6.10 приведено изменение составов равновесных газовых фаз от температуры и концентрации металла в железе при восстановлении оксидов хрома и марганца.

Из приведённых зависимостей следует, что в присутствии железа равновесный состав газа беднее водородом и оксидом углерода. И образование раствора хрома и марганца в железе существенно облегчает процесс восстановления оксидов хрома и марганца и сдвигает его в область более низких температур.

Следовательно, при восстановительном обжиге комплексных руд возможно восстановление железа, никеля, хрома, марганца и при растворении обожженной руды в соляной кислоте они перейдут в раствор, образуя хлориды. Оксиды остальных элементов, входящих в состав руд, в этих условиях не восстанавливаются и перейдут в нерастворимый остаток.

На рис. 6.11 представлено изменение равновесного состава газовой фазы от температуры при восстановлении кристаллов хлоридов водородом, из которого следует, что в диапазоне температур 400 - 900°С возможно восстановление хлоридов железа и никеля. Хлориды марганца и хрома при указанных температурах не восстанавливаются. Однако, восстановление их в присутствии металлического железа возможно при температурах 600 - 700°С с образованием твердого раствора хрома и марганца в железе.

Начальная стадия растворения происходит бурно, сопровождается интенсивным выделением водорода, который, пройдя системы осушки и очистки, подаётся на восстановление хлоридов. По мере снижения концентрации соляной кислоты и сокращения поверхности твердой фазы скорость реакции растворения падает. Для ускорения процесса растворения на конечном этапе реакционный объём обогревается паром, подаваемым в паровые рубашки реакторов.


Н2О/Н2 или СО2/СО∙104

150

2 2
3 3
1 1

120

90

60

30

0
700 800 900 1000 1100 1200

Температура, 0С

Рис. 6.9. Зависимость состава равновесной газовой фазы от температуры

и концентрации хрома в железе в реакциях восстановления оксида хрома

водородом (сплошные линии), оксидом углерода (пунктирные линии)

1 – при отсутствии раствора; 2 – с образованием раствора хрома в

железе при концентрации 0,1 %; 3 – то жен при 0,5 %.

Технологический процесс получения легированного железа из комплексных руд хлоридным методом представлен на рис. 6.12. Усредненная на рудном дворе руда поступает в дробильное отделение. Сюда же подается твердый восстановитель. В процессе размола происходит равномерное перемешивание руды и восстановителя. Приготовленная шихта направляется на
восстановительный обжиг. Для ускорения процесса обжиг проводится с
использованием газообразного восстановителя. Подвергнутая восстановительному обжигу руда направляется в реакторы растворения, заполненные соляной кислотой.

Рис. 6.10. Зависимость состава равновесной газовой фазы от температуры и концентрации марганца в железе в реакциях восстановления оксида марганца водородом (сплошные линии), и оксидом углерода (пунктирные линии)

1 - при отсутствии раствора; 2-е образованием раствора марганца в

железе при концентрации 0,1%; 3 - то же при 0,5%

Полученная в результате растворения пульпа, содержащая частицы нерастворимого остатка, подается на фильтрацию, где раствор отделяется от нерастворимого остатка. Отфильтрованный раствор поступает на выпаривание и кристаллизацию.

Кристаллы хлоридов направляются на восстановление, которое осуществляется с помощью водорода. Образующийся в ходе восстановления хлористый водород поступает на регенерацию соляной кислоты.

К числу основных достоинств гидрометаллургического способа следует отнести высокую чистоту порошка и почти полная регенерация водорода и соляной кислоты, образующихся на стадиях растворения металлосодержащего сырья и восстановления хлоридов. Кроме того, нерастворимый осадок имеет свою самостоятельную ценность, так как после перевода в раствор получаемого металла он обогащается другими ценными компонентами.



Твердый восстановитель

Газообразный

восстановитель

Соляная

кислота Н2

Осадок

Н2 Хлористый водород

Рис. 6.12. Схема технологического процесса получения

легированного железа хлоридным методом

Для случая использования легированного металлосодержащего сырья можно регулировать состав получаемого порошка путем селективного восстановления сложных хлоридов.

Л Е К Ц И Я № 17

6.3. Прессование металлических порошков

Прессование металлических порошков представляет собой технологическую операцию, в результате которой под действием приложенного усилия из бесформенного сыпучего порошка получается прочное тело - прессовка по форме и размерам близкая форме и размерам готового изделия.

Сложность явлений, сопровождающих уплотнение порошка и многообразие требований к свойствам готовых изделий вызывают необходимость проведения специальных операций по подготовке порошка к формованию.

Основными операциями при подготовке порошков к прессованию являются:

- отжиг;

- классификация (рассев);

- смешивание.