Смекни!
smekni.com

Микропроцессоры (стр. 4 из 15)

Кристалл ЦПУ Pentium Pro содержит 5,5 миллионов транзисторов; кристалл кэш-памяти второго уровня - 15,5 миллионов. Для сравнения, последняя модель Pentium включала около 3,3 миллиона транзисторов, а кэш-память второго уровня реализовывалась с помощью внешнего набора кристаллов памяти. Хотя число транзисторов на кристалле с вторичным кэшем втрое больше, чем на кристалле процессора, физические размеры кэша меньше: 202 квадратных миллиметра против 306 у процессора. Оба кристалла вместе заключены в керамический корпус.

В процессоре Pentium Pro было впервые реализовано:

Архитектура двойной независимой шины;

Динамическое исполнение;

Количество стадий конвейера для целочисленных операций увеличено с 5 до 14;

Реализован механизм выполнения инструкций с нарушением очередности их следования (так называемое спекулятивное ветвление), что позволило Pentium Pro просматривать до 18 инструкций вперед и обрабатывать их в зависимости от их готовности, а не от порядка следования в программе.

Особенности архитектуры двойной независимой шины

Архитектура двойной независимой шины, снимающая многие проблемы пропускной способности современных компьютерных платформ, была разработана фирмой Intel для удовлетворения запросов современных прикладных программ, а также для обеспечения возможности дальнейшего развития новых поколений процессоров. Наличие двух независимых шин дает возможность процессору получать доступ к данным, передающимся по любой из шин одновременно и параллельно, в отличие от последовательного механизма, характерного для систем с одной шиной.

Особенности динамического обновления

Всё началось с того, что конкуренты Intel предлагали альтернативные решения, при которых требуется минимальное число новых инструкций или вообще не требуется переработка компиляторов, а повышение производительности процессоров и скорости выполнения программ и вычислений достигается за счет внутренней оптимизации процессорного ядра. Так, технология 3D Now компании AMD позволяет производить две операции с плавающей точкой вместо одной у Pentium, а число новых инструкций около 30, при относительно равной стоимости. Дальнейшее увеличение числа инструкций при каждом введении новых технологий обработки данных могло привести Intel к тому, что микропроцессоры стали бы перегруженными объемом поддерживаемых инструкций. Компилирующие системы для них (например от Microsoft) – станут еще тяжелее и неповоротливее, а все нарастающая тактовая частота и производительность процессора будет "съедаться" непомерно большими программными продуктами. Так что КПД нововведений может оказаться невысоким. Для этого и было реализовано Динамическое исполнение.

Динамическое Исполнение представляет собой комбинацию трех технологий обработки данных, обеспечивающих более эффективную работу процессора - множественное предсказание ветвлений, анализ потока данных и спекулятивное исполнение. Динамическое исполнение обеспечивает более эффективную работу процессора, позволяя манипулировать данными, а не просто исполнять последовательный список инструкций. Динамическое исполнение позволяет процессору предсказывать порядок инструкций при помощи технологии Множественного Предсказания Ветвлений, которая предсказывает прохождение программы по нескольким ветвям. Процессор может предвидеть разделение потока инструкций, что дает возможность с 90% точностью предсказать, в какой области памяти можно найти следующие инструкции. Это оказывается возможным, поскольку в процессе исполнения инструкции, процессор просматривает программу на несколько шагов вперед. Технология Анализа потока данных позволяет проанализировать код и составить график, т.е. новую оптимальную последовательность исполнения инструкций, независимо от порядка их следования в тексте программы. И, наконец, Спекулятивное выполнение повышает скорость, за счет выполнения до 5 инструкций одновременно, по мере их поступления в оптимизированной последовательности - т.е. спекулятивно. Это обеспечивает максимальную загруженность процессора и увеличивает скорость исполнения программы.

Процессор Pentium Pro стал родоначальником процессоров Pentium шестого поколения. Однако изготовление процессоров такой архитектуры по технологии 0,5 мкм было очень дорого, поэтому процессор Pentium Pro использовался практически только в высокопроизводительных серверах.

Intel Pentium MMX

Выпуск процессора Pentium MMX (Multimedia Extension) оказался следующим большим шагом вперед. В процессоре впервые был реализован новый набор из 57 команд MMX. Произошло это 8 января 1997 года. С развитием технологии процессоры стали выпускать по 0,35-микронной технологии. В процессорах Pentium MMX была впервые реализована групповая обработка нескольких целочисленных операндов разрядностью 1, 2, 4 или 8 байт с помощью одной команды. Такая обработка обеспечивается введением дополнительного блока MMX (MiltiMedia Extension — Мультимедийное Расширение). Это особая разновидность процессора, в которой предусмотрены дополнительные команды для обработки звука, изображений и видео. Изменилось напряжение питания (уменьшилось до 2,8 вольта), соответственно, потребовались изменения в конструкциях системных плат - оказалась необходимой установка дополнительного стабилизатора напряжения.

Технология Intel MMX

Технология Intel MMX является крупнейшим достижением Intel в области архитектуры микропроцессоров. Она улучшает компрессию-декомпрессию видео, работу с изображениями, шифрование и обработку сигналов ввода-вывода, т.е. все мультимедиа операции, операции связи и сетевые взаимодействия. Основа MMX расширения процессорного ядра заключается в технологии обработки множественных данных в одной инструкции (Single Instruction Multiple Data - SIMD). Процесс SIMD (один поток команд и множество потоков данных) дает возможность одной инструкции исполнять одну и ту же функцию с различными данными и их частями. SIMD позволяет чипу уменьшить количество циклов с интенсивными вычислениями, характерными для обработки видео, аудио, графической информации и анимации. Эта технология, на данном этапе, предусматривает включение 57-ми новых инструкций, разработанных специально для более эффективной работы с видео, звуком и графикой.

Intel Pentium II

Микропроцессор Intel Pentium II был выпущен в 1998 году. Правда, кэш второго уровня в нём, так и осталась в виде отдельной микросхемы. Более того, кэш работала на частоте в два раза меньшей, чем ядро процессора. Тем не менее, это был серьёзный шаг в повышении производительности, и к тому же цена процессора оказалась доступной для большинства покупателей. Процессор Pentium II явился закономерным продолжением и развитием технологии Pentium с ее современными дополнениями и изменениями. Pentium II использует новую высокопроизводительную архитектуру двойной независимой шины, позволяющую существенно увеличить пропускную способность и привести скорость шины в соответствие с мощностью процессора. Выделенная кэш-память второго уровня 512 KB, расположена в картридже с односторонним контактом (S.E.C.). Также, имеется и 32 KB кэша первого уровня (16K для данных и 16K - для инструкций), что вдвое больше, чем у процессора Pentium Pro. Кэш второго уровня имеет код коррекции ошибок (ECC), увеличивающий надежность и целостность данных при использовании в одно- и двухпроцессорных серверных системах.

Основными конструктивными особенностями процессора являются:

Архитектура Двойной Независимой Шины;

Технология Intel MMX;

Динамическое исполнение;

Картридж с односторонним контактом (S.E.C.).

Intel Celeron

Совершенно новой веткой в направлении технологии микропроцессоров для Intel является выпуск параллельных основным процессорам, "облегченных" и удешевленных вариантов. Таковой является серия Celeron. Впервые эти процессоры появились в апреле 1998 года. Процессоры Celeron с тактовыми частотами 400, 366, 333, 300 и 266 МГц были ориентированы на рынок компьютеров начального уровня. Процессоры Celeron имеют все достоинства микроархитектуры P6, на основе которой был построен процессор Pentium II.

Основные характеристики серии Celeron:

Работают на высоких тактовых частотах и обладают высокой производительностью при доступных ценах;

Используют технологию MMX;

Используют технологию динамического исполнения;

Производятся по 0,25-микронной технологии и монтируются в корпус с односторонним расположением контактов типа S.E.P.P., обеспечивающий простоту установки и экономичность;

Используют системную шину микроархитектуры P6 с тактовой частотой 66 МГц, поддерживающую параллельные транзакции и контроль четности данных;

Оснащены неблокируемой кэш-памятью первого уровня емкостью 32 кбайт (16 кбайт для команд + 16 кбайт для данных);

Оснащены встроенной кэш-памятью 2-го уровня объемом 128 Kб;

Ядро содержит от 7,5 млн. (у процессоров с тактовыми частотами 300 и 266 МГц) до 19 млн. (у процессоров с частотами 400, 366, 333 МГц) транзисторов и включает встроенную кэш-память 2-го уровня.

Процессоры оснащены встроенной системой самотестирования BIST, обеспечивающей контроль однобитных ошибок микрокода, поддержку больших логических массивов, тестирование кэш-памяти команд и данных. Специальные внутренние счетчики обеспечивают мониторинг производительности и подсчет событий.