Смекни!
smekni.com

Строение металлов (стр. 1 из 48)

Федеральное агенство по образованию

ГОУ ВПО “СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ”

им. акад. М. Ф. Решетнева

Г. Ф. Тарасов

ТЕХНОЛОГИИ И

МАТЕРИАЛОВЕДЕНИЕ

Учебное пособие по технологии и материаловедению

для студентов специальности 220601 «Управление инновациями»

всех форм обучения

Красноярск 2009

Л Е К Ц И Я № 1

ВВЕДЕНИЕ

В современных условиях развития общества одним из основных факторов технического прогресса в машиностроении является совершенствование технологии производства материалов. Важным направлением этого прогресса является создание и широкое использование новых конструкционных материалов, позволяющих резко повысить технический уровень и надежность оборудования. Создавая конструкции машин, обеспечивающих высокую надежность работы, инженер должен хорошо знать способы получения основных машиностроительных материалов – чугунов, сталей и цветных металлов.

Человек научился добывать и использовать металлы несколько тысячелетий назад. В отдаленные времена было известно лишь несколько металлов. Это золото, медь, серебро, олово, свинец, железо, ртуть, сурьма. В настоящее время этот круг значительно расширился. Достаточно отметить, что из известных элементов Периодической системы элементов Менделеева свыше 75% составляют металлы.

По исторически сложившейся классификации все металлы, применяющиеся в промышленности делятся на две основные группы:

- черные;

- цветные.

К черным металлам относятся железо и его сплавы (чугун, сталь, ферросплавы), хром, марганец.

Группа цветных металлов объединяет все остальные металлы, которая в свою очередь подразделяется на несколько подгрупп:

- лёгкие металлы (алюминий, магний и др.);

- тяжелые (медь, никель, свинец, цинк и др.);

- малые цветные металлы (кобальт, молибден, вольфрам, кадмий и др.);

- благородные (золото, серебро, платина и др.);

- редкие (лантан, церий, неодим и др.);

- радиоактивные (уран, плутоний и др.).

Среди металлов железо по своему значению занимает особое место.

Производство черных металлов в значительной степени определяет уровень технического развития, являясь основой современной техники. В общемировом производстве металлов желе­зо и его сплавы составляют свыше 90 %. Широкому применению в самых разнообразных областях техники черные металлы обязаны своими высокими механическими и физическими свойствами. Преимущественному применению черных металлов способствовало также большое распространение в природе железных руд и сравнительная простота производства чугуна и стали.

Железо было известно человеку еще до нашей эры. Вначале железо получали в обычных кострах, а затем в специально устроенных плавильных ямах - сыродутных горнах. В горн, выложенный из камня, загружали руду и древесный уголь. Воздух (кислород) необходимый для горения угля, подавался в виде дутья снизу горна при помощи мехов. Образующиеся газы (СО) восстанавливали оксиды железа. Из-за невысокой температуры в таких горнах можно было получать только малоуглеродистое железо, притом в тестообразном состоянии.

Постепенно горн совершенствовался и превратился в небольшую шахтную печь, которая получила название домницы. Увеличение высоты домницы и интенсивная подача дутья привели к повышению температуры и более интенсивному развитию процессов восстановления и науглероживания металла. В домницах получали жидкое углеродистое железо с примесями марганца и кремния, то есть чугун.

Сначала чугун был нежелательным продуктом, так как его не умели испо­льзовать для изготовления изделий и орудий труда. Позднее был найден способ передела чугуна в ковкое железо. Способ получил название кричного процесса, при котором чугун переплавляли в кричном горне. В разогретый горн на раскаленный древесный уголь загружали чугун и высокожелезистые шлаки. Плавясь и стекая вниз, чугун подвергался окислительному воздействию дутья и железистого шлака. Происходило окисление его примесей (кремния, марганца, углерода), и чугун превращался в малоуглеродистое ковкое железо.

Кричный передел чугуна давал возможность получать железо более высокого качества, чем сыродутное. При этом оказалось целесообразным сначала выплавлять из руд чугун, а затем перерабатывать его в ковкое железо.

Со временем конструкция домниц изменялась, увеличивались высота и поперечное сечение, улучшался профиль, и домница превратилась в доменную печь.

В дальнейшем прогресс доменного процесса шел в направлении увеличения объёма печей, перехода к более рациональному профилю, совершенствования конструкции доменных печей, механизации и автоматизации процесса.

В 1856 г. Г. Бессемером был предложен способ передела жидкого чугуна путем продувки его воздухом в конвертере, положившего начало высокопроизводительному современному кислородно-конвертерному процессу. В 1864 г. отец и сын Мартены разработали способ производства стали в регенеративной отражательной печи, получившей название мартеновского процесса, и позволившего решить проблему переработки стального лома.

В конце XIX в. возникла новая отрасль металлургии - производство качественных сталей в электрических печах.

Наряду с черными металлами очень важное значение в современном промышленном производстве имеют цветные металлы, которые нашли применение практически во всех отраслях промышленности и особенно в таких как радиотехника и электроника, самолетостроение и ракетостроение.

В настоящее время металлургия черных и цветных металлов достигла очень высокого технического уровня. В результате упорного труда металлургов многих поколений созданы эффективные технологические схемы переработки руд в черные и цветные металлы.

Особое место среди разнообразных способов производства металлических конструкционных материалов занимает порошковая металлургия, позволяющая производить не только изделия из металлических порошков различных форм и назначений, но и создавать принципиально новые материалы, получить которые иным путем крайне трудно или вообще невозможно.

Порошковая металлургия позволяет решать следующие важнейшие задачи, определяющие направление её развития в настоящее время:

- изготовление материалов и изделий с особыми составами и свойствами, которые недостижимы другими способами производства;

- изготовление материалов и изделий с обычными составами и свойствами, но при значительно более выгодных экономических показателях производства.

В ближайшие годы ожидается интенсивное развитие теории и практики процессов порошковой металлургии.

Особое развитие за последние 30 лет получило производство синтети­ческих материалов — пластмасс. Пластмассы и другие неметаллические материалы используют в конструкциях машин и механизмов взамен ме­таллов и сплавов. Такие материалы позволяют повысить сроки службы деталей и узлов машин и установок, снизить массу конструкций, сэкономить дефицитные цветные металлы и сплавы, снизить стоимость и трудоемкость обработки.

Рациональный выбор материалов и совершенствование технологиче­ских процессов их обработки обеспечивают надежность конструкций, снижают себестоимость и повышают производительность труда. При­кладную науку о строении и свойствах технических материалов, основ­ной задачей которой является установление связи между составом, струк­турой и свойствами, называют материаловедением.

Л Е К Ц И Я № 2

1 СОСТАВ, СВОЙСТВА И НАЗНАЧЕНИЕ СОВРЕМЕН-

НЫХ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

1.1 Строение металлов

1.1.1 Типы кристаллических решеток.

Твердые тела по строению делят на 2 вида: кристалличес­кие и аморфные. Кристаллические тела при нагреве остаются твердыми до определенной температуры (температуры плавления), при которой они переходят в жидкое состояние. Аморфные тела при нагреве размягчаются в большом температурном интервале; сначала они становятся вязкими и лишь затем, переходят в жидкое состояние. Все металлы и их сплавы - тела кристаллические.

Металлами называ­ют химические элементы, характерными признаками которых являются непрозрачность, блеск, хорошая электро- и теплопроводность, пластич­ность, а также способность свариваться. Не поте­ряло своего научного значения определение металлов, данное более 200 лет назад великим русским ученым М. В. Ломоносовым: "Металлы суть светлые тела, которые ковать можно". Характерной особенностью металлов является то, что, вступая в химические реакции с элементами неметаллического просхождения, они отдают последним свои внешние валентные электроны. Объ­ясняется это непрочной свя­зью внешних электронов атома металла с его ядром. Металлы имеют на наружных оболочках всего 1 -2 эле­ктрона, тогда как у неметаллов таких электронов много (5-8).

Чистые химические элементы металлов (например, железо, медь, алю­миний и др.) могут образовывать более сложные вещества, в состав которых могут входить несколько элементов-металлов, часто с примесью заметных количеств элементов-неметаллов. Такие вещества называются металлическими сплавами. Простые вещества, образующие сплав, на­зывают компонентами сплава.

Для описания кристаллической структуры металлов пользуются по­нятием кристаллической решетки. Кристаллическая решетка- это воо­бражаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие металл. Частицы вещества (ионы, атомы), из которых построен кристалл, расположены в определенном геометриче­ском порядке, который периодически повторяется в пространстве. В от­личие от кристаллов в аморфных телах (стекло, пластмассы) атомы распо­лагаются в пространстве беспорядочно, хаотично.

Формирование кристаллической решетки в металле происходит при переходе металла из жидкого в твердое состояние. При затвердевании металла расстояние между атомами сокращается, а силы взаимодействия между ними возрастают. Характер взаимодействия атомов определяется строе­нием их внешних электронных оболочек. При сближении атомов элек­троны, находящиеся на внешних оболочках теряют связь со своими атомами вследствие отрыва валентного электрона одного атома положитель­но заряженным ядром другого и т. д. Происходит образование свободных электронов, так как они не принадлежат отдельным атомам. Таким образом, в твердом состоянии металл представляет собой структуру, состо­ящую из положительно заряженных ионов, омываемых свободными эле­ктронами.