Смекни!
smekni.com

Курс социально-экономической статистики (стр. 168 из 182)

Наблюдаемые и модельные значения результативного признака у показаны на рис. 53.1.

Рис. 53.1. Наблюдаемые и модельные значения результативного признака у

Дифференцируя, с учетом (53.11) и (53.10), квадратичную форму Q по β0, β1, …, βk и приравнивая частные производные к нулю, получим систему нормальных уравнений

решая которую получим вектор-столбец оценок b, где b = (b0, b1, ..., bk)T. Согласно методу наименьших квадратов, вектор-столбец оценок коэффициентов регрессии получается по формуле

(53.12)

ХT — транспонированная матрица X;

TХ)-1 матрица, обратная матрице ХTХ.

Зная вектор-столбец b оценок коэффициентов регрессии, найдем оценку

уравнения регрессии

(53.13)

или в матричном виде:

Оценка ковариационной матрицы вектора коэффициентов регрессии b определяется выражением

(53.14)

где

(53.15)

Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем

(53.16)

Значимость уравнения регрессии, т.е. гипотеза Н0: β = 0 (β0,= β1 = βk = 0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле

(53.17)

По таблице F-распределения для заданных α, v 1 = k + l,v2 = n – k - l находят Fкр.

Гипотеза H0 отклоняется с вероятностью α, если Fнабл > Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.

Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотезы Н0: βj = 0, где j = 1, 2, ..., k, используют t-критерий и вычисляют tнабл(bj) = bj /

bj. По таблице t-распределения для заданного α и v = п - k - 1 находят tкр.

Гипотеза H0 отвергается с вероятностью α, если tнабл > tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т.е. βj 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначительных переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Существуют и другие алгоритмы пошагового регрессионного анализа, например с последовательным включением факторов.

Наряду с точечными оценками bj генеральных коэффициентов регрессии βj регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.

Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид

(53.19)

где tα находят по таблице t-распределения при вероятности α = 1 - γ и числе степеней свободы v = п - k - 1.

Интервальная оценка для уравнения регрессии

в точке, определяемой вектором-столбцом начальных условий X0 = (1, x
, x
,,..., x
)T записывается в виде

(53.20)

Интервал предсказания

n+1 с доверительной вероятностью у определяется как

(53.21)

где tα определяется по таблице t-распределения при α = 1 - γ и числе степеней свободы v = п - k - 1.

По мере удаления вектора начальных условий х0 от вектора средних

ширина доверительного интервала при заданном значении γ будет увеличиваться (рис. 53.2), где

= (1,
).

Рис. 53.2. Точечная

и интервальная

оценки уравнения регрессии
.

Мультиколлинеарность

Одним из основных препятствий эффективного применения множественного регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между аргументами х1, х2, ..., хk. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица (XTX) становятся слабообусловленными, т.е. их определители близки к нулю.

Это приводит к неустойчивости оценок коэффициентов регрессии (53.12), завышению дисперсии s

, оценок этих коэффициентов (53.14), так как в их выражения входит обратная матрица (XTX)-1, получение которой связано с делением на определитель матрицы TХ). Отсюда следуют заниженные значения t(bj). Кроме того, мультиколлинеарность приводит к завышению значения множественного коэффициента корреляции.

На практике о наличии мультиколлинеарности обычно судят по матрице парных коэффициентов корреляции. Если один из элементов матрицы R больше 0,8, т.е. | rjl | > 0,8, то считают, что имеет место мультиколлинеарность, и в уравнение регрессии следует включать один из показателей — хj или xl.

Чтобы избавиться от этого негативного явления, обычно используют алгоритм пошагового регрессионного анализа или строят уравнение регрессии на главных компонентах.

Пример. Построение регрессионного уравнения

Согласно данным двадцати (п = 20) сельскохозяйственных районов, требуется построить регрессионную модель урожайности на основе следующих показателей:

у — урожайность зерновых культур (ц/га);

x1 — число колесных тракторов (приведенной мощности) на 100 га;

х2 число зерноуборочных комбайнов на 100 га;

х3 число орудий поверхностной обработки почвы на 100 га;

x4 — количество удобрений, расходуемых на гектар;

х5 количество химических средств оздоровления растений, расходуемых на гектар.

Исходные данные для анализа приведены в табл. 53.1.

Таблица 53.1

Исходные данные для анализа

Решение. С целью предварительного анализа взаимосвязи показателей построена матрица R — таблица парных коэффициентов корреляции.

Анализ матрицы парных коэффициентов корреляции показывает, что результативный признак наиболее тесно связан с показателем х4 количеством удобрений, расходуемых на гектар (ryx4 = 0,58).

В то же время связь между аргументами достаточно тесная. Так, существует практически функциональная связь между числом колесных тракторов (x1) и числом орудий поверхностной обработки почвы x3(rx1x3) = 0,98.

О наличии мультиколлинеарности свидетельствуют также коэффициенты корреляции rx1x2 = 0,85 и rx3x2 = 0,88.

Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим рассчитанное на ЭВМ регрессионное уравнение урожайности, включив в него все исходные показатели: