Смекни!
smekni.com

Курс социально-экономической статистики (стр. 176 из 182)

Средняя квадратическая ошибка:

(54.2)

где k — число оцениваемых коэффициентов уравнения.

Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами

(54.3)

где tα — табличное значение, определяемое по t-распределению Стьюдента при уровне значимости α и числе степеней свободы п - k.

В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов.

Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:

(54.4)

Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина еt должна носить случайный характер с нулевой средней.

Кроме того, ошибки аппроксимации et должны быть независимыми между собой и подчиняться нормальному закону распределения et Î N (0, σ). Независимость ошибок et, т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина—Уотсона, основанного на статистике:

(54.5)

где et = xt -

.

Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW ≤ 2, а отрицательной — 2 ≤ D W ≤ 4.

О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле

(54.6)

где τ = 0, 1, 2 ... .

После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.

Рассмотрим задачу сглаживания сезонных колебаний, исходя из ряда Vt = хt -

, где xt значение исходного временного ряда в момент t, а
оценка соответствующего значения тренда (t = 1, 2, ..., п).

Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:

Оценки параметров αi и βi модели определяют из выражений

(54.7)

где k = п / 2 максимально допустимое число гармоник;

ωi = 2πi / п — угловая частота i-й гармоники (i = 1, 2, ..., т).

Пусть т — число гармоник, используемых для сглаживания сезонных колебаний (т < k). Тогда оценка гармонического ряда имеет вид

(54.8)

а расчетные значения временного ряда исходного показателя определяются по формуле

54.2. Адаптивные методы прогнозирования

При использовании трендовых моделей в прогнозировании обычно предполагается, что основные факторы и тенденции прошлого периода сохранятся на период прогноза или что можно обосновать и учесть направление их изменений в перспективе. Однако в настоящее время, когда происходит структурная перестройка экономики, социально-экономические процессы даже на макроуровне становятся очень динамичными. В этой связи исследователь часто имеет дело с новыми явлениями и с короткими временными рядами. При этом устаревшие данные при моделировании часто оказываются бесполезными и даже вредными. Таким образом, возникает необходимость строить модели, опираясь в основном на малое количество самых свежих данных, наделяя модели адаптивными свойствами.

Важную роль в деле совершенствования прогнозирования должны сыграть адаптивные методы, цель которых заключается в построении самонастраивающихся моделей, которые способны учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущих членов данного ряда. Адаптивные модели достаточно гибки, однако на их универсальность, пригодность для любого временного ряда рассчитывать не приходится.

При построении конкретных моделей необходимо учитывать наиболее вероятные закономерности развития реального процесса. Исследователь должен закладывать в модель те адаптивные свойства, которых достаточно для слежения за реальным процессом с заданной точностью.

У истоков адаптивного направления лежит простейшая модель экспоненциального сглаживания, обобщение которой привело в появлению целого семейства адаптивных моделей. Простейшая адаптивная модель основывается на вычислении экспоненциально взвешенной скользящей средней.

Экспоненциальное сглаживание исходного временного ряда xt осуществляется по рекуррентной формуле

(54.9)

где St значение экспоненциальной средней в момент t, a. St-1 — в момент t-1;

α — параметр сглаживания, адаптации, α = const, 0 < α < 1;

β = 1 - α.

Выражение (54.9) можно представить в виде

(54.10)

В (54.10) экспоненциальная средняя в момент t выражена как экспоненциальная средняя предшествующего момента St-1 плюс доля α отклонения текущего наблюдения хt от экспоненциальной средней St-1 момента t - 1.

Последовательно используя рекуррентное соотношение (54.9), можно выразить экспоненциальную среднюю St через значения временного ряда:

(54.11)

где S0 величина, характеризующая начальные условия для первого применения формулы (54.9), при t = 1.

Так как β = (1 - α) < 1, то при t 0 βt 0, и, согласно (54.11),

(54.12)

т.е. величина St оказывается взвешенной суммой всех членов ряда. При этом веса падают экспоненциально в зависимости от давности наблюдения, откуда и название St экспоненциальная средняя.

Из (54.12) следует, что увеличение веса более свежих наблюдений может быть достигнуто повышением α. В то же время для сглаживания случайных колебаний временного ряда xt величину α нужно уменьшить. Два названных требования находятся в противоречии, и на практике при выборе α исходят из компромиссного решения.

Экспоненциальное сглаживание является простейшим видом самообучающейся модели с параметром адаптации α. Разработано несколько вариантов адаптивных моделей, которые используют процедуру экспоненциального сглаживания и позволяют учесть наличие у временного ряда xt тенденции и сезонных колебаний. Рассмотрим некоторые из таких моделей.

Адаптивная полиномиальная модель первого порядка

Рассмотрим алгоритм экспоненциального сглаживания, предполагающий наличие у временного ряда xt линейного тренда. В основе модели лежит гипотеза о том, что прогноз может быть получен по уравнению

где

прогнозируемое значение временного ряда на момент (t + τ);

,

— оценки адаптивных коэффициентов полинома первого порядка в момент t;

τ — величина упреждения.

Экспоненциальные средние 1-го и 2-го порядков для модели имеют вид

(54.13)

где β = 1 - α, а оценка модельного значения ряда с периодом упреждения τ равна

(54.14)

Для определения начальных условий первоначально по данным временного ряда xt находим методом наименьших квадратов оценки линейного тренда:

и принимаем

и
. Тогда начальные условия определяются как: