Смекни!
smekni.com

Курс социально-экономической статистики (стр. 175 из 182)

3) каждое ограничение на структурные коэффициенты относится к отдельному уравнению. Процедура оценивания коэффициентов рекурсивной системы с помощью метода наименьших квадратов, примененного к отдельному уравнению, приводит к состоятельным оценкам.

В качестве примера рассмотрим ситуацию, которая приводит к рекурсивной системе уравнений. Предположим, что цены на рынке Pt в день t зависят от объема продаж в предыдущий день qt-1, а объем покупок qt в день t зависит от цены товара в день t. Математически систему уравнений можно представить в виде

Случайные возмущения εt и ζt можно считать независимыми. Мы получили рекурсивную систему двух уравнений, причем в правую часть первого уравнения входит предопределенная переменная qt-1, а в правую часть второго — эндогенная переменная Pt.

Применение метода наименьших квадратов для получения оценок одновременных уравнений приводит к смещенным и несостоятельным оценкам, поэтому область его применения ограничена рекурсивными системами. Для оценивания систем одновременных уравнений в настоящее время наиболее часто используют двухшаговый метод наименьших квадратов, применяемый к каждому уравнению системы в отдельности, и трехшаговый метод наименьших квадратов, предназначенный для оценивания всей системы в целом. Сущность двухшагового метода состоит в том, что для оценивания параметров структурного уравнения метод наименьших квадратов применяют в два этапа. Он дает состоятельные, но в общем случае смещенные оценки коэффициентов уравнения, является достаточно простым с теоретической точки зрения и удобным для вычисления.

Согласно алгоритму трехшагового метода наименьших квадратов, первоначально с целью оценки коэффициентов каждого структурного уравнения применяют двухшаговый метод наименьших квадратов, а затем определяют оценку для ковариационной матрицы случайных возмущений. После этого с целью оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

Пример. Построение эконометрической модели мирового рынка нефти

Очевидно, что модель должна отражать взаимосвязь между тремя основными элементами рыночного механизма — спросом, ценой и предложением (эндогенными переменными). В свою очередь состояние указанных элементов в каждый момент можно охарактеризовать с помощью системы объясняющих, экзогенных, переменных.

Система включает общехозяйственные и товарно-рыночные показатели. Общехозяйственные показатели отражают экономические процессы, происходящие в мире и отдельных странах, и дают представление о фоне, на котором происходит развитие рынка. Вторая группа показателей отражает явления, которые характерны для рынка нефти. Особый интерес представляют показатели, обладающие опережающим эффектом (временным лагом) по отношению к динамике эндогенных переменных конъюнктуры рынка нефти.

При выборе экзогенных переменных учитывалось, что состояние рынка нефти в любой момент определяется не только его внутренними факторами, но и состоянием внешней среды, т.е. общехозяйственной конъюнктурой всего мирового хозяйства, и в первую очередь — динамикой воспроизводственного цикла, уровнем деловой активности в отраслях-потребителях, положением в кредитно-денежной и валютно-финансовой сферах экономики.

Завершающим этапом разработки модели исследуемого рынка является ее реализация. На данном этапе математическая модель формируется в общем виде, оцениваются ее параметры, проводится содержательная экономическая интерпретация, выясняются ее статистические и прогностические свойства.

При построении модели использовалась система показателей, основанная на ежеквартальных динамических рядах за последние 15 лет, которая характеризует основные стороны рынка нефти в экономическом, временном и географическом аспектах.

Проведение корреляционного анализа на этапе предварительной обработки данных позволило ограничить круг используемых показателей (первоначально их было более ста), выбрать для дальнейшего анализа такие, которые отражают воздействие основных факторов на рынок нефти и наиболее тесно связаны с динамикой показателей конъюнктуры. При этом решалась также задача исключения влияния мультиколлинеарности.

Модель строилась исходя из предпосылки, что величина спроса играет более активную роль, чем факторы предложения и цены. Рекурсивная модель включает линейные регрессионные уравнения для следующих эндогенных переменных в момент t:

y1,t — экспорт нефти из стран ОПЕК;

у2,t — добыча нефти в странах ОПЕК;

y3,t — цена на нефть легкую аравийскую.

В модель вошли предопределенные переменные:

у3,t-1 цена на нефть легкую аравийскую с лагом в 1 квартал;

x6,t поставки нефти на переработку в Японию;

х7,t-1 поставки нефти на переработку в США в момент t-1;

x9,t — коммерческие запасы нефти в странах Западной Европы;

x10,t-1 — коммерческие запасы нефти в США с лагом в 1 квартал;

x12,t — экспорт нефти из бывшего СССР в развитые страны;

x20,t-2 — индекс экспортных цен ООН на топливо с лагом в 2 квартала, а x20,t-3 — в 3 квартала;

x23,t-1 — загрузка производственных мощностей обрабатывающей промышленности США с лагом в 1 квартал;

y1,t / y2,t показатель, учитывающий дисбаланс на рынке нефти в момент t.

Эконометрическая модель конъюнктуры рынка нефти имеет следующий вид:

Анализ статистических характеристик модели показал, что в целом она адекватно описывает рынок нефти: все уравнения значимы, объясняют от 67 до 92% дисперсии эндогенных переменных и характеризуются незначительными отклонениями расчетных значений эндогенных переменных от фактических. Значимость коэффициентов модели проверялась по t-критерию. Расчетные значения tj указаны в скобках под соответствующими коэффициентами.

Построенная модель позволяет анализировать различные ситуации развития рынка нефти.

Контрольные вопросы

1. Что характеризует парный, частный и множественный коэффициенты корреляции? Сформулируйте их основные свойства.

2. Какие задачи решаются методами регрессионного анализа?

3. В чем состоят отрицательные последствия мультиколлинеарности и как можно избавиться от этого негативного явления?

4. В чем состоит задача компонентного анализа, как интерпретировать главные компоненты и определить их вклад в суммарную дисперсию?

5. Какие задачи решает кластерный анализ? В чем особенности иерархических кластер-процедур?

Глава 54. Экономико-математические методы прогнозирования социально-экономических процессов

54.1. Трендовые модели прогнозирования

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов xt, где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда, их сравнение на основе статистических критериев и отбор наилучших из них для прогнозирования.

При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или — в более широком смысле слова — это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса — Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

Наиболее распространенными критериями являются следующие.

Относительная ошибка аппроксимации:

(54.1)

где et = хt -

ошибка прогноза;

хt фактическое значение показателя;

прогнозируемое значение.

Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда

< 10%, хорошей — при
= 10—20% и удовлетворительной — при
= 20—50%.