Смекни!
smekni.com

Географическая картина мира книга 1 Максаковский В П (стр. 59 из 187)

К числу важнейших из них относится робототехника. Первый промышленный робот был установлен в 1961 г. на автомобильном заводе концерна «Дженерал Моторс», после чего их производство стало быстро расти. Только в 1980–1990 гг. мировой парк промышленных роботов увеличился с 20 до 400 тыс. штук, в 1995 г. достиг 650 тыс., а к 2000 г. превысил 1 млн штук. Основными сферами применения роботов стали сварка, резание, прессовка, нанесение покрытий, зачистка, полировка. Особенно широкое применение они нашли в отраслях с поточным, конвейерным производством, а также для работы в опасных и вредных для человека условиях.

Первое место и по производству, и по размерам парка роботов занимала и занимает Япония. Роботы в эту страну были завезены в 1967 г. из США, а в следующем году здесь началось их собственное производство. Уже в начале 1990-х гг. парк промышленных роботов в Японии превысил 300 тыс. штук, что составило 60 % общемирового парка, тогда как на всю Западную Европу приходилось 20, а на США – всего 8 % этого парка. По числу промышленных роботов из расчета на 10 тыс. занятых в промышленности Япония опережала США в 10 раз. К тому же значительную часть продукции своей робототехники Япония отправляла на экспорт, тогда как на рынке США 70 % всех роботов имели иностранное происхождение. Правда, к концу 1990-х гг. темпы развития японской робототехники несколько замедлились, в результате чего ее доля в мировом парке роботов сократилась до 50 %. В 2005 г. в пятерку ведущих стран входили Япония (350 тыс.), Германия (135), США (130), Италия (70) и Франция (45 тыс. роботов).

Хотя обычно пишут о промышленных роботах, нужно иметь в виду, что применение роботов давно уже вышло за рамки этой отрасли хозяйства. Роботы все шире используются на транспорте, в складском хозяйстве, при переработке промышленных и бытовых отходов, на дорожных работах, при освоении богатств океанского дна, в космосе, а также в сельском хозяйстве (роботы – стригали овец в Австралии). Большие возможности для их применения открывает и непроизводственная сфера. Роботы используют противопожарная служба, служба ликвидации последствий аварий и стихийных бедствий, их применяют в строительстве, в здравоохранении (включая проведение сложных операций).

Еще одна важная сфера применения микропроцессоров и роботов – гибкие производственные системы (ГПС), являющиеся наиболее эффективным средством комплексной автоматизации производства. Эти системы позволяют быстрее переналаживать производство и переходить на выпуск новой продукции, особенно при серийном выпуске изделий. Они дают возможность технике в течение определенного времени работать в режиме «безлюдного» производства, создавать обрабатывающие центры и целые заводы-автоматы.

В начале 1990-х гг. в мире уж действовало 1200 таких ГПС, из которых на долю Японии приходилось 20 %, США – 17, Великобритании – 10, ФРГ – 9, Франции – 9, СССР – 7, Италии и Швеции – по 4,5 %. К 2000 г. количество металлообрабатывающих станков с ручным управлением должно было сократиться до 25–30 %, тогда как число многоцелевых станков с числовым программным управлением (ЧПУ), большинство из которых встроено в ГПС, и автоматических линий – возрасти.

На рубеже XX–XXI вв. перспективы компьютернизации связывают в первую очередь с принципиально новыми видами компьютеров – квантовыми, молекулярными, оптическими, биокомпьютерами и др.

Россия в последние десятилетия утратила многие ранее завоеванные позиции в области электронизации, робототехники, использования ГПС. В результате уже в середине 1990-х гг. ее компьютерный парк уступал парку США более чем в 60 раз. По доле в мировом компьютерном парке (0,7 %) она находилась на 16-м, а по показателю обеспеченности компьютерами на 100 человек (7 штук) – на 34-м месте в мире. Количество производимых компьютеров в стране не только не возросло, а уменьшилось в несколько раз; выпуск промышленных роботов и вовсе был прекращен. Только к концу 1990-х гг. в этой отрасли стал намечаться некоторый перелом к лучшему. В 2001 г. был создан компьютер, способный производить 1 трлн операций в секунду.

66. Биотехнология и биоиндустрия

Под биотехнологией понимают совокупность методов и приемов использования живых организмов, биологических продуктов и биотехнических систем в производственной сфере. Иными словами, биотехнология применяет современные знания и технологии для изменения генетического материала растений, животных и микробов, способствуя получению на этой основе новых (зачастую принципиально новых) результатов. В литературе достижения биотехнологии за последнее время часто называют научно-техническим прорывом, биореволюцией, и это не преувеличение.

Можно согласиться и с теми учеными, которые, пусть несколько условно, подразделяют биотехнологию на «старую» и «новую».

«Старая» биотехнология зародилась очень давно, на основе традиционных микробиологических производств, в особенности бродильных. Процесс сбраживания с помощью микроорганизмов при хлебопечении, виноделии, пивоварении, сыроварении, получении сиропов, молочнокислых продуктов, силосовании кормов был известен еще в древности. В XX в. биотехнология получила дальнейшее развитие, преимущественно в недрах химической промышленности, главным образом ее фармацевтической подотрасли (производство антибиотиков и пр.).

«Новая» биотехнология – это типичное порождение НТР, вызванное к жизни ее достижениями второй половины XX в. Она опирается на инновации и в химических технике и технологиях, и в электронике, и в микробиологии, и в биохимии, и в генетике, да и в других научных направлениях. В сферу «новой» биотехнологии входит также генетическая и клеточная инженерия, имеющая целью создание новых, высокоэффективных организмов с заранее заданными свойствами путем непосредственного изменения генетической системы тех или иных организмов.

Сферы применения биотехнологии ныне очерчены уже достаточно определенно. В посвященном биотехнологии разделе принятой на Конференции в Рио-де-Жанейро (1992) «Повестке дня на XXI век» названы десять таких целей. Эконо-мико-географ Н.В.Алисов, один из немногих представителей этой ветви географии, проявивших интерес к проблемам биотехнологии, выделяет шесть главных областей ее применения.

Во-первых, это повышение продуктивности сельскохозяйственного производства путем внедрения методов генной инженерии в растениеводство и животноводство и защиты культурных растений и домашних животных от болезней и вредителей.

Из методов генной инженерии в данном случае следует прежде всего назвать клонирование (от греч. klon – ветвь, отпрыск), т. е. бесполое размножение клеток растений и животных.

В 1990-е гг. произошел взрыв интереса к клонированию, который уже привел к определенным практическим результатам. В 1997 г. весь мир облетела весть о рождении в Шотландии первого клонированного млекопитающего – овцы Долли. В 1998 г. в США методом клонирования был выведен теленок, также явившийся полной копией матери. В том же году в Японии были получены клонированные телята-двойняшки, и японские ученые объявили, что в течение ближайших десяти лет в стране появится в продаже клонированная говядина. Работы по трансплантации эмбрионов крупного рогатого скота ведутся и в некоторых других странах. Одновременно продолжаются исследования в области рекомбинации ДНК для модификации сельскохозяйственных культур.

Болыпое значение имеет также другое направление биотехнологии – защита культурных растений от болезней и вредителей. Уже разработаны новые виды биопестицидов, биофунгицидов и биоинсектицидов, безопасные для человека и окружающей среды и избирательно действующие на сельскохозяйственные культуры. То же относится и к биоудобрениям, созданным, например, с помощью бактерий, улавливающих и усваивающих азот из воздуха. Благодаря их применению усиливается сопротивление сельскохозяйственных культур болезням и вредителям, что позволяет уменьшить потребности в химических пестицидах. Одновременно ведутся работы, направленные на увеличение почвенного плодородия и повышение степени усвоения растениями питательных веществ.

Во-вторых, это расширение возможностей получения продуктов питания. В этом случае имеется в виду расширение ассортимента и улучшение качества продовольственных продуктов, а также удешевление исходного сырья, используемого в пищевкусовой промышленности. Применение методов биотехнологии позволяет лучше сбалансировать содержание в продуктах питания белков, жиров и углеводов. Наиболее ярким примером такого рода может служить изготовление глюкозно-фруктовых сиропов из крахмалосодержащего сырья низкого качества, получившее уже довольно широкое распространение.

При этом в оценках целесообразности и допустимости внедрения новых продуктов Северная Америка и Западная Европа различаются довольно сильно. В США и Канаде происходит быстрая коммерциализация биотехнологических открытий, а доводы о необходимой предосторожности чаще всего отвергаются со ссылкой на отсутствие этого принципа в международном праве. В Западной Европе, напротив, делают акцент именно на предосторожности, необходимости прохождения новыми продуктами и добавками достаточного цикла экспертиз. Официальные власти и общества потребителей настаивают там на обязательном включении в этикетки товаров сведений об их генетической чистоте или о присутствии в них генетических мутантов.

В-третьих, это увеличение энергетических ресурсов. Имеется в виду использование микроорганизмов для получения энергии из биомассы, причем как в газообразном (биогаз), так и в жидком (этиловый спирт) виде. Развитие этого направления позволяет использовать огромные и все время возобновляющиеся ресурсы биомассы, а также обеспечить дополнительные меры по охране окружающей среды. Использование соответствующей техники (биогенераторы) можно считать уже вполне освоенным делом.