Смекни!
smekni.com

Когнитивная наука Основы психологии познания том 1 Величковский Б М (стр. 50 из 120)

1 ' Аналогичные данные недавно впервые были получены и для собственно цвета (Shevell
& Wei, 2000)189

отсчета. Наконец, рис. 3.8В иллюстрирует влияние воспринимаемого распределения света и тени12. Светлые квадраты в середине этого рисун­ка по своей окраске совпадают с темными квадратами на переднем пла­не, но, отчасти, из-за «отбрасываемой цилиндром тени» их восприятие искажается. Таким образом, реальные механизмы восприятия оказыва­ются явно более сложными, чем это предполагалось в классических пси­хологических и нейропсихологических исследованиях цвета. Светлот-ные карты в действительности представляют собой трехмерные ландшафты, учитывающие удаленность, а также взаимную ориентацию поверхностей и предполагаемых источников света в пространстве.

Проведенный анализ говорит о том, что микроструктура процессов восприятия цвета (окраски) включает операции пространственной ло­кализации и определения ориентации поверхностей. Можно попытать­ся непосредственно прохронометрировать эти формы восприятия, что­бы проверить данный вывод. В исследовании, проведенном совместно с М.С. Капицей (Величковский, Капица, 1980), мы просили испытуе­мых максимально быстро определять в разных пробах параметры одно­го из перцептивных измерений предъявляемого на дисплее объекта: пространственное положение (вверху или внизу), направление движе­ния (влево или вправо), светлота (низкая или высокая) и форма (сим­метричная или асимметричная относительно вертикали). Регистриро­валось время реакции — отвечая, испытуемые должны были нажимать на кнопки, — и для различных интервалов времени реакции подсчиты-вался коэффициент успешности различения соответствующего перцеп­тивного признака.

Результаты показаны на рис. 3.9. При их интерпретации следует иметь в виду, что выбор ответа и его чисто моторные компоненты могут требовать не менее 100 мс. Это время нужно вычесть из полученных дан­ных, чтобы получить более точную оценку времени восприятия. Как сле­дует из графиков, особенно быстро испытуемые могли определять про­странственное положение и направление движения, причем данные для скорости оценок этих двух измерений практически совпали. Именно так должны были бы выглядеть результаты, если на самом деле существует единая функциональная система, обеспечивающая чрезвычайно быст­рую (около 100 мс) динамическую локализацию объектов. Восприятие и различение индивидуальности объектов требуют явно большего времени. Так, для оценки видимой светлоты потребовалось время в общей слож­ности порядка 200 мс. Еще более продолжительным оказалось восприя­тие особенностей формы объектов, требовавшее не менее 300 мс.


190

12 Системы автоматического разпознавания до сих пор с большим трудом различают тени (пятна) и телесные предметы, так что снабженный электронным «зрением» автомо­биль вполне может внезапно остановиться перед тенью, отбрасываемой растущим на обо­чине деревом.



100


300 Время реакции, мс


500


Рис. 3.9. Успешность различения четырех перцептивных признаков объекта (по: Велич-ковский, Капица, 1980).


Ситуацию только что описанного простого эксперимента по хроно­метрированию восприятия различных перцептивных характеристик можно использовать для более углубленного анализа взаимоотношений соответствующих процессов. Поскольку во всех пробах испытуемые от­вечали нажатием одной из двух кнопок, легко проанализировать, напри­мер, насколько полно сознательная задача оценки цветовых (светлот-ных) характеристик позволяет игнорировать другие признаки, такие как форма или движение. Результаты такого анализа свидетельствуют об асимметричности взаимодействий перцептивных процессов (Величков-ский, Капица, 1980). Оценивая цвет объекта, мы можем игнорировать форму, но не положение или движение, так что многие ответы, ошибоч­ные с точки зрения сознательной задачи, оказываются неслучайными в отношении различения этих формально иррелевантных признаков. Точ­но так же обстоит дело и с восприятием формы — ответы обнаруживают зависимость от процессов динамической пространственной локализа­ции, но остаются случайными в отношении признака светлоты. Остает­ся добавить, что когда задача заключается в различении положения или движения, наблюдается значительная взаимная интерференция, однако влияние цвета и формы полностью отсутствует.


191


Большинство других исследований по классификации признаков объектов также свидетельствуют о том, что цвет и форма — это незави­симые качества. Этот вывод соответствует данным об относительной независимости их нейронных механизмов, возможности селективных выпадений и необходимости использования внимания для их одновре­менного восприятия (см. 3.4.2 и 4.2.3). Что касается отношений процес­сов динамической локализации (восприятие положения и движения) и восприятия перцептивной идентичности предметов (форма и/или цвет), то, по крайней мере при жестких ограничениях на время воспри­ятия, они явно носят асимметричный характер, что соответствует пред­ставлению о двух последовательных уровнях восприятия.

Опираясь на эти простые хронометрические эксперименты, можно обратиться к линии исследований восприятия, связанной с анализом феноменов маскировки. В психологии с термином «маскировка» ассоци­ируются две довольно различные группы феноменов. Гештальтпсихоло-ги положили начало изучению статической маскировки (или камуфля­жа). Она чрезвычайно широко распространена в биологическом мире, например, в виде вариантов адаптивной раскраски, делающей непо­движное животное трудноразличимым в естественной среде обитания. Основу маскировки в этом первом значении слова образуют законы перцептивной организации (см. 1.3.1). В когнитивной психологии и в этой главе речь идет об эффектах динамической маскировки, которая возникает при быстром последовательном предъявлении информа­ции13. Типичная процедура состоит в предъявлении в пространственно-временном соседстве двух стимулов — тестового и маскирующего. При несовпадении их локализаций говорят также о метаконтрасте. Эффек­ты маскировки обычно оказываются сильнее, если маска следует за те­стовым стимулом (обратная маскировка), а не предшествует ему (прямая маскировка).

Многочисленные данные демонстрируют два вида зависимости ус­пешности опознания или оценки параметров первого стимула от задерж­ки второго — монотонную и немонотонную, когда максимальный эф­фект маскировки наблюдается при асинхронностях включения 100—120 мс. Так, в одном из вариантов исследования так называемой «очень ко­роткой зрительной памяти» (см. 3.2.1) испытуемым показывался ряд букв, причем одна из букв маркировалась кольцом или сплошным дис­ком, перекрывавшим критическую позицию. Если меткой был диск, то при одновременном показе с буквами успешность восприятия буквы на критической позиции была минимальной, затем — примерно в течение трети секунды — она улучшалась. Если меткой было кольцо, то при ну-


192

13 Насколько нам известно, первая работа по «динамической маскировке» была опуб­ликована в 1871 году работавшим у Гельмгольца в Гейдельберге стажером из России (впос­ледствии приват-доцентом физиологии Санкт-Петербургского университета) Н.И. Бак­стом (Baxt, 1871).


левой задержке испытуемый просто видел букву в кольце, и успешность воспроизведения была максимальной. При росте асинхронности предъявления (ABC) кольца восприятие буквы ухудшалось и при асинх­ронности порядка 100 мс наступал момент, когда кольцо как бы «стира­ло» букву — феноменально оно окружало пустое место. При увеличении задержек до 200—300 мс кольцо переставало оказывать какое-либо вли­яние на восприятие и воспроизведение вновь улучшалось.

Для объяснения динамической маскировки было предложено два принципа — интеграции и прерывания. Согласно первому принципу, маскировка есть результат объединения тестового стимула и маски в единый перцепт. Такая комбинация затрудняет считывание информа­ции о тестовом стимуле. Согласно принципу прерывания, маскировка возникает из-за прекращения процесса считывания информации о те­стовом стимуле, например, в результате вытеснения или стирания его перцептивной репрезентации маской. Современные теории включают оба принципа. Считается, что интеграция действует при небольших интервалах между стимулами. При асинхронностях, превышающих 100 мс, вступает в силу механизм прерывания. Подробный анализ этого воп­роса содержится в раннем исследовании Майкла Турвея (Turvey, 1973). Он обнаружил два механизма маскировки — периферический и цент­ральный. Периферическая маскировка бывает как прямой, так и обратной и определяется суммарной энергией маски, то есть подчинена правилу:

Ixt= const, где / — интенсивность, ai—время стимуляции.

Она исчезает при дихоптических условиях — независимом предъяв­лении тестового стимула и маски левому и правому глазу. Эти свойства позволяют интерпретировать периферическую маскировку как реализа­цию принципа интеграции. Центральная маскировка зависит не от энер­гетических характеристик маски, а от асинхронности ее включения. Она является обратной и возможна при дихоптических условиях, но только в случае структурированной маски — гомогенное световое поле оказы­вается неэффективным. По всей видимости, механизмом центральной маскировки является прерывание.