Смекни!
smekni.com

ЦНС (стр. 16 из 102)

лучения перемещается вокруг продольной оси тела больного по

дуге 360 градусов. Коллимированный пучок рентгеновского из-

лучения, проходя через голову пациента, в различной степени

поглощается тканями, затем попадает на детекторы преобразо-

вателей, которые измеряют его интенсивность. Полученные зна-

чения интенсивности, ослабленного после прохождения через

объект изучения, поступают в процессор быстродействующей

ЭВМ, где подвергаются математической обработке. ЭВМ, в соот-

ветствии с выбранным алгоритмом, осуществляет построение

изображения срезов на экране видиоконтрольного устройства.

Такое изображение представляет собой массив коэффициентов

ослабления, записанных в квадратную матрицу (256х256 или

512х512 элементов изображения).

Цикл сканирования для КТ -III поколения не превышает

5-10 секунд, для IV поколения - до 1-2. Толщина среза варь-

ирует от 1 до 14 мм. Разрешающая способность современных то-

мографов позволяет обнаруживать локальные изменения тканей

объемом менее 1 мм куб. Для измерения плотности ткани ис-

пользуются условные единицы измерения EMI или Hounsfield

(ед.H.). Согласно лабораторным данным за нулевой уровень

принята плотность воды, плотность воздуха равна -1000 ед.H.,

плотность кости +1000 Н. Однако, границы этой шкалы могут

быть расширены до +3000-4000 Н. Многочисленные исследования


- 93 -

головного мозга с помощью КТ позволили разработать систему

усредненных значений коэффициентов абсорбции для различных

областей нормального мозга и его патологических образований

( табл. 1 ). Различие коэффициентов абсорбции отражается в

виде 15-16 полутоновых ступеней серой шкалы. На каждую такую

ступень приходится около 130 значений коэффициентов ослабле-

ния.

Обычно КТ проводится в аксиальной проекции, при этом наи-

более выгодно использовать орбитомеатальную линию в качестве

базисной для построения серии срезов. Возможности вычисли-

тельной техники позволяют осуществлять полипроекционные ре-

конструкции в любых плоскостях, включая косые.

На томограммах отчетливо видна нормальная и патологичес-

кая картина желудочковой системы мозга, субарахноидальных

ликворных пространств. Легко диагностируются очаговые и диф-

фузные повреждения ткани мозга, оболочечные и внутримозговые

гематомы, абсцессы, онкологические поражения мозга и оболо-

чек, дислокации мозга при тяжелой ЧМТ и новообразованиях. КТ

обладает определенными возможностями при прогнозировании ис-

ходов черепно-мозговых повреждений.

Магнитно-резонансная томография в течение короткого вре-

мени завоевала признание у нейрорентгенологов и нейрохирур-

гов и в перспективе обещает стать основным диагностическим

методом при широчайшем спектре заболеваний и повреждений че-

репа, позвоночника, головного и спинного мозга. Мировыми ли-

дерами в производстве аппаратов для МРТ являются фирмы

"Philips" (Gyroscan); "Siemens"; "Instrumentarium" и др.

Физические основы метода достаточно сложны. Используется


- 94 -

свойство ядер водорода, входящих в состав биомолекул, воз-

буждаться под действием радиочастотных импульсов в магнитном

поле, причем процесс возбуждения наблюдается только при со-

ответствии частоты радиоволн напряженности магнитного поля,

т.е. носит резонансный характер. После возбуждения протоны

переходят в стабильное состояние, излучая при этом слабые

затухающие радиосигналы, регистрация и анализ которых лежат

в основе метода. Изображение определяется рядом параметров

сигналов, зависящих от парамагнитных взаимодействий в тка-

нях. Они выражаются физическими величинами, получившими наз-

вание "время релаксации". При этом выделяют т.н. "спиновую"

(Т2) и "спин-решетчатую" (Т1) релаксацию. Релаксационные

времена протонов преимущественно определяют контрастность

изображения тканей. На амплитуду сигнала оказывает влияние и

концентрация ядер водорода (протонная плотность), потоки би-

ологических жидкостей.

Зависимость интенсивности сигнала от релаксационных вре-

мен в значительной степени определяется техникой возбуждения

спиновой системы протонов. Для этого используется ряд клас-

сических комбинаций радиочастотных импульсов, получивших

название импульсных последовательностей: "насыщение-восста-

новление" (SR); "спиновое эхо" (SE); "инверсия-восстановле-

ние" (IR); "двойное эхо" (DE). Сменой импульсной последова-

тельности или изменением ее параметров ( времени повторения

(TR) - интервала между комбинацией импульсов; времени за-

держки эхо-импульса (TE); времени подачи инвертирующего им-

пульса (TI) ) можно усилить или ослабить влияние T1 или T2

релаксационного времени протонов на контрастность изображе-


- 95 -

ния тканей.

MРТ обеспечивает получение срезов в произвольно выбранных

плоскостях и зонах интереса. За редким исключением МРТ явля-

ется более информативной, чем КТ. При поражениях, которые

являются изоплотностными по данным КТ, МРТ способствует ус-

тановлению правильного диагноза. К этой группе относятся

хронические травматические внутричерепные гематомы, мелкоо-

чаговые нарушения мозгового кровообращения, глиоматоз, низ-

кодифференцированные глиомы, очаги демиелинизации и др.

С появление поверхностных катушек МРТ по праву становится

основным диагностичским пособием при позвоночно-спинномозго-

вых повреждениях, заменяющим миелографию. Большое значение

имеет разработка специфических контрастных веществ на основе

гадолиния, способствующих определять контуры очагов пораже-

ния мозга на фоне его отека, точнее диагностировать некото-

рые, особенно метастатические, опухоли.

2.7. Электрофизиологические методы исследования в

нейрохирургии: эхоэнцефалография, электроэнцефалография.

Электрофизиологические методы исследования в современ-

ной нейрохирургии и нейротравматологии занимают одно из ве-

дущих значений в виду того, что характеризуют функциональное

состояние центральной и периферической нервной системы, их

реактивность, адаптивные возможности. Н.Н.Бурденко неоднок-

ратно подчеркивал важность "использования в нейрохирургии

всех методов, могущих охарактеризовать физиологическое сос-

тояние больного".


- 96 -

Электроэнцефалография является одним из основных мето-

дов нейрофизиологического исследования у пациентов с заболе-

ваниями и повреждениями нервной системы. ЭЭГ является мето-

дом, позволяющим судить о наличии, локализации, динамике и ,

в определенной степени, о характере патологического процесса

в головном мозге.

Анализу подвергают зарегистрированные в уни- или бипо-

лярных отведениях колебания биопотенциалов головного мозга.

При этом наиболее часто используют т.н. скальповые электро-

ды, установленные на (пластинчатые) или (игольчатые), вве-

денные мягкие ткани головы в соответствии со специально раз-

работанной схемой, получившей название - 10-20. Реже, как

правило при обследовании специфической группы пациентов с

резистентной к консервативной терапии эпилепсией, использу-

ются отведения от коры (электрокортикография) или подкорко-

вых образований (электросубкортикография). Для повышения ди-

агностических возможностей метода используют функциональные

нагрузки с открыванием и закрыванием глаз, звуковым или све-

товым раздражением в виде непрерывного засвета или ритмичес-

ких вспышек, гипервентиляцией, поворотами головы, деприва-

цией сна, фармакологическими нагрузками.

Анализ ЭЭГ включает оценку общего вида ЭЭГ, определение

основного показателя корковой активности и правильность его

пространственного распределения, выявление общемозговых из-

менений ЭЭГ (свидетельствуют о преобладании патологической

активности различного характера), выявление локальной пато-

логической активности (в виде очага пониженной активности

при внутричерепной гематоме, или пароксизмальной активности


- 97 -

при фокальной эпилепсии).

Диагностические возможности ЭЭГ в острейшем периоде че-

репно-мозговой травмы ограничены жесткими временными рамка-

ми, определяющими необходимость использования наиболее инфор-

мативных и показательных способов выявления органических

повреждений вещества головного мозга, тем более, что резуль-

таты ЭЭГ скорее имеют дополнительное диагностическое значе-

ние и характеризуют страдание головного мозга в целом, осо-

бенно, когда речь идет о необходимости объективизации степе-

ни нарушения сознания.

На стороне полушария, подверженного компрессии внутри-

черепной гематомой регистрируется уплощенная кривая, нередка

дельта-активность. При этом чувствительность ЭЭГ в определе-

нии стороны поражения меньше, чем при внутримозговых опухо-

лях. Отек вещества головного мозга характеризуется медлен-

но-волновой активностью. Выраженность диффузных изменений

ЭЭГ определяется степенью утраты сознания и характеризуется

дезорганизацией и редукцией альфа-ритма, нарастанием мед-

ленно-волновой активности, сглаживанием регионарных разли-

чий, генерализованная ритмическая тета-активность (при сопо-

ре и коме I-II) биоэлектрическим молчанием (при запредельной

коме).

Значение ЭЭГ возрастает при обследовании пациентов с

отдаленными последствиями травмы черепа и головного мозга,

особенно в случаях посттравматической эпилепсии. ЭЭГ отно-

сится к разряду необходимых диагностических методов в комп-

лексе дооперационного обследования пациентов с посттравмати-

ческими и послеоперационными дефектами костей черепа и имеет


- 98 -